Adaptive Manifolds for Real-Time High-Dimensional Filtering0.5em (Supplementary Materials) 0.5em

نویسندگان

  • Eduardo S. L. Gastal
  • Manuel M. Oliveira
چکیده

Figure 1: Performance on a GTX 280 GPU of our adaptivemanifold filter (AM) versus the permutohedral lattice (PL), and the guided filter (GF). The vertical axis shows time, in seconds, to filter a 1 Megapixel RGB color image. The shaded areas represent performance changes when σr varies from 1 (bottom curve) to 0.05 (top curve). The guided filter performance curve, in dashed red, is based on performance numbers reported by Bauszat et al. [2011] on a GTX 285 GPU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

An Automatic and Adaptive Multi-manifolds Learning Algorithm

Isomap is a classic and representative manifold learning algorithm for nonlinear dimensionality reduction, which aims to circumvent the problem of “the curse of dimensionality” and attempts to recover the intrinsic structure hidden in high-dimensional data based on the assumption that data lie in or near a single manifold. However, Isomap fails to work when data set consists of multi-clusters o...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

Adaptive Mesh Refinement for Characteristic Grids

I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the bestknown past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual “diamon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012